If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+8y-155=0
a = 1; b = 8; c = -155;
Δ = b2-4ac
Δ = 82-4·1·(-155)
Δ = 684
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{684}=\sqrt{36*19}=\sqrt{36}*\sqrt{19}=6\sqrt{19}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-6\sqrt{19}}{2*1}=\frac{-8-6\sqrt{19}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+6\sqrt{19}}{2*1}=\frac{-8+6\sqrt{19}}{2} $
| 48(4+w)=16*27 | | 9c^2−64=0 | | n/0.6=0.03/2 | | 5(-3a+1)=7(2a+6) | | y^2+8y+88=0 | | 11=6x-25 | | 2x=-15+4x | | 2m^2−50=0 | | 5x^2-x-40=0 | | 0.4((x+5)=0.4x+2 | | -2/8w+53=59 | | 15x-25=-4 | | 24=2(x+1)+2(3x+1) | | 0.4(x+5)=0.4x*2 | | (X+5)²+(x-2)²=37 | | 15=2(x-3) | | 2(3x+7)+5=49 | | 24=(x+1)(3x+1) | | 3x+2(-x-5)=35 | | 6x+4=8x-8=180 | | 5y+1=-4 | | 3x+10=4x-10=180 | | 4(-x/2+5)=11 | | 12-2w=16 | | 24=(x+1)+(3x+1) | | 7p^2-7p-(7p)=0 | | 12.5=4x•2.5 | | 5/2.x=55 | | g/12=7 | | m/8=4/2 | | 11(y-2)=77 | | -x-5+5=2(2x-1)-3 |